An Analysis of Deep Neural Network Models for Practical Applications

24 May 2016  ·  Alfredo Canziani, Adam Paszke, Eugenio Culurciello ·

Since the emergence of Deep Neural Networks (DNNs) as a prominent technique in the field of computer vision, the ImageNet classification challenge has played a major role in advancing the state-of-the-art. While accuracy figures have steadily increased, the resource utilisation of winning models has not been properly taken into account. In this work, we present a comprehensive analysis of important metrics in practical applications: accuracy, memory footprint, parameters, operations count, inference time and power consumption. Key findings are: (1) power consumption is independent of batch size and architecture; (2) accuracy and inference time are in a hyperbolic relationship; (3) energy constraint is an upper bound on the maximum achievable accuracy and model complexity; (4) the number of operations is a reliable estimate of the inference time. We believe our analysis provides a compelling set of information that helps design and engineer efficient DNNs.

PDF Abstract

Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here