Alternating Minimization Converges Super-Linearly for Mixed Linear Regression

23 Apr 2020  ·  Avishek Ghosh, Kannan Ramchandran ·

We address the problem of solving mixed random linear equations. We have unlabeled observations coming from multiple linear regressions, and each observation corresponds to exactly one of the regression models. The goal is to learn the linear regressors from the observations. Classically, Alternating Minimization (AM) (which is a variant of Expectation Maximization (EM)) is used to solve this problem. AM iteratively alternates between the estimation of labels and solving the regression problems with the estimated labels. Empirically, it is observed that, for a large variety of non-convex problems including mixed linear regression, AM converges at a much faster rate compared to gradient based algorithms. However, the existing theory suggests similar rate of convergence for AM and gradient based methods, failing to capture this empirical behavior. In this paper, we close this gap between theory and practice for the special case of a mixture of $2$ linear regressions. We show that, provided initialized properly, AM enjoys a \emph{super-linear} rate of convergence in certain parameter regimes. To the best of our knowledge, this is the first work that theoretically establishes such rate for AM. Hence, if we want to recover the unknown regressors upto an error (in $\ell_2$ norm) of $\epsilon$, AM only takes $\mathcal{O}(\log \log (1/\epsilon))$ iterations. Furthermore, we compare AM with a gradient based heuristic algorithm empirically and show that AM dominates in iteration complexity as well as wall-clock time.

PDF Abstract
No code implementations yet. Submit your code now

Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods