Almost Optimal Batch-Regret Tradeoff for Batch Linear Contextual Bandits

15 Oct 2021  ·  Zihan Zhang, Xiangyang Ji, Yuan Zhou ·

We study the optimal batch-regret tradeoff for batch linear contextual bandits. For any batch number $M$, number of actions $K$, time horizon $T$, and dimension $d$, we provide an algorithm and prove its regret guarantee, which, due to technical reasons, features a two-phase expression as the time horizon $T$ grows. We also prove a lower bound theorem that surprisingly shows the optimality of our two-phase regret upper bound (up to logarithmic factors) in the \emph{full range} of the problem parameters, therefore establishing the exact batch-regret tradeoff. Compared to the recent work \citep{ruan2020linear} which showed that $M = O(\log \log T)$ batches suffice to achieve the asymptotically minimax-optimal regret without the batch constraints, our algorithm is simpler and easier for practical implementation. Furthermore, our algorithm achieves the optimal regret for all $T \geq d$, while \citep{ruan2020linear} requires that $T$ greater than an unrealistically large polynomial of $d$. Along our analysis, we also prove a new matrix concentration inequality with dependence on their dynamic upper bounds, which, to the best of our knowledge, is the first of its kind in literature and maybe of independent interest.

PDF Abstract
No code implementations yet. Submit your code now

Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here