Algorithms and SQ Lower Bounds for PAC Learning One-Hidden-Layer ReLU Networks

22 Jun 2020  ·  Ilias Diakonikolas, Daniel M. Kane, Vasilis Kontonis, Nikos Zarifis ·

We study the problem of PAC learning one-hidden-layer ReLU networks with $k$ hidden units on $\mathbb{R}^d$ under Gaussian marginals in the presence of additive label noise. For the case of positive coefficients, we give the first polynomial-time algorithm for this learning problem for $k$ up to $\tilde{O}(\sqrt{\log d})$. Previously, no polynomial time algorithm was known, even for $k=3$. This answers an open question posed by~\cite{Kliv17}. Importantly, our algorithm does not require any assumptions about the rank of the weight matrix and its complexity is independent of its condition number. On the negative side, for the more general task of PAC learning one-hidden-layer ReLU networks with arbitrary real coefficients, we prove a Statistical Query lower bound of $d^{\Omega(k)}$. Thus, we provide a separation between the two classes in terms of efficient learnability. Our upper and lower bounds are general, extending to broader families of activation functions.

PDF Abstract

Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods