Agnostic Estimation for Misspecified Phase Retrieval Models

NeurIPS 2016  ·  Matey Neykov, Zhaoran Wang, Han Liu ·

The goal of noisy high-dimensional phase retrieval is to estimate an $s$-sparse parameter $\boldsymbol{\beta}^*\in \mathbb{R}^d$ from $n$ realizations of the model $Y = (\boldsymbol{X}^{\top} \boldsymbol{\beta}^*)^2 + \varepsilon$. Based on this model, we propose a significant semi-parametric generalization called misspecified phase retrieval (MPR), in which $Y = f(\boldsymbol{X}^{\top}\boldsymbol{\beta}^*, \varepsilon)$ with unknown $f$ and $\operatorname{Cov}(Y, (\boldsymbol{X}^{\top}\boldsymbol{\beta}^*)^2) > 0$. For example, MPR encompasses $Y = h(|\boldsymbol{X}^{\top} \boldsymbol{\beta}^*|) + \varepsilon$ with increasing $h$ as a special case. Despite the generality of the MPR model, it eludes the reach of most existing semi-parametric estimators. In this paper, we propose an estimation procedure, which consists of solving a cascade of two convex programs and provably recovers the direction of $\boldsymbol{\beta}^*$. Our theory is backed up by thorough numerical results.

PDF Abstract
No code implementations yet. Submit your code now

Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here