AgentMixer: Multi-Agent Correlated Policy Factorization

16 Jan 2024  ·  Zhiyuan Li, Wenshuai Zhao, Lijun Wu, Joni Pajarinen ·

Centralized training with decentralized execution (CTDE) is widely employed to stabilize partially observable multi-agent reinforcement learning (MARL) by utilizing a centralized value function during training. However, existing methods typically assume that agents make decisions based on their local observations independently, which may not lead to a correlated joint policy with sufficient coordination. Inspired by the concept of correlated equilibrium, we propose to introduce a \textit{strategy modification} to provide a mechanism for agents to correlate their policies. Specifically, we present a novel framework, AgentMixer, which constructs the joint fully observable policy as a non-linear combination of individual partially observable policies. To enable decentralized execution, one can derive individual policies by imitating the joint policy. Unfortunately, such imitation learning can lead to \textit{asymmetric learning failure} caused by the mismatch between joint policy and individual policy information. To mitigate this issue, we jointly train the joint policy and individual policies and introduce \textit{Individual-Global-Consistency} to guarantee mode consistency between the centralized and decentralized policies. We then theoretically prove that AgentMixer converges to an $\epsilon$-approximate Correlated Equilibrium. The strong experimental performance on three MARL benchmarks demonstrates the effectiveness of our method.

PDF Abstract

Datasets


Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here