AFDGCF: Adaptive Feature De-correlation Graph Collaborative Filtering for Recommendations

26 Mar 2024  ·  Wei Wu, Chao Wang, Dazhong Shen, Chuan Qin, Liyi Chen, Hui Xiong ·

Collaborative filtering methods based on graph neural networks (GNNs) have witnessed significant success in recommender systems (RS), capitalizing on their ability to capture collaborative signals within intricate user-item relationships via message-passing mechanisms. However, these GNN-based RS inadvertently introduce excess linear correlation between user and item embeddings, contradicting the goal of providing personalized recommendations. While existing research predominantly ascribes this flaw to the over-smoothing problem, this paper underscores the critical, often overlooked role of the over-correlation issue in diminishing the effectiveness of GNN representations and subsequent recommendation performance. Up to now, the over-correlation issue remains unexplored in RS. Meanwhile, how to mitigate the impact of over-correlation while preserving collaborative filtering signals is a significant challenge. To this end, this paper aims to address the aforementioned gap by undertaking a comprehensive study of the over-correlation issue in graph collaborative filtering models. Firstly, we present empirical evidence to demonstrate the widespread prevalence of over-correlation in these models. Subsequently, we dive into a theoretical analysis which establishes a pivotal connection between the over-correlation and over-smoothing issues. Leveraging these insights, we introduce the Adaptive Feature De-correlation Graph Collaborative Filtering (AFDGCF) framework, which dynamically applies correlation penalties to the feature dimensions of the representation matrix, effectively alleviating both over-correlation and over-smoothing issues. The efficacy of the proposed framework is corroborated through extensive experiments conducted with four representative graph collaborative filtering models across four publicly available datasets.

PDF Abstract

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here