Adversarial Uncertainty Quantification in Physics-Informed Neural Networks

9 Nov 2018  ·  Yibo Yang, Paris Perdikaris ·

We present a deep learning framework for quantifying and propagating uncertainty in systems governed by non-linear differential equations using physics-informed neural networks. Specifically, we employ latent variable models to construct probabilistic representations for the system states, and put forth an adversarial inference procedure for training them on data, while constraining their predictions to satisfy given physical laws expressed by partial differential equations. Such physics-informed constraints provide a regularization mechanism for effectively training deep generative models as surrogates of physical systems in which the cost of data acquisition is high, and training data-sets are typically small. This provides a flexible framework for characterizing uncertainty in the outputs of physical systems due to randomness in their inputs or noise in their observations that entirely bypasses the need for repeatedly sampling expensive experiments or numerical simulators. We demonstrate the effectiveness of our approach through a series of examples involving uncertainty propagation in non-linear conservation laws, and the discovery of constitutive laws for flow through porous media directly from noisy data.

PDF Abstract

Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here