Adversarial Training is a Form of Data-dependent Operator Norm Regularization

NeurIPS 2020  ·  Kevin Roth, Yannic Kilcher, Thomas Hofmann ·

We establish a theoretical link between adversarial training and operator norm regularization for deep neural networks. Specifically, we prove that $\ell_p$-norm constrained projected gradient ascent based adversarial training with an $\ell_q$-norm loss on the logits of clean and perturbed inputs is equivalent to data-dependent (p, q) operator norm regularization. This fundamental connection confirms the long-standing argument that a network's sensitivity to adversarial examples is tied to its spectral properties and hints at novel ways to robustify and defend against adversarial attacks. We provide extensive empirical evidence on state-of-the-art network architectures to support our theoretical results.

PDF Abstract NeurIPS 2020 PDF NeurIPS 2020 Abstract
No code implementations yet. Submit your code now

Tasks


Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here