Adversarial Robust Low Rank Matrix Estimation: Compressed Sensing and Matrix Completion

25 Oct 2020  ·  Takeyuki Sasai, Hironori Fujisawa ·

We consider robust low rank matrix estimation as a trace regression when outputs are contaminated by adversaries. The adversaries are allowed to add arbitrary values to arbitrary outputs. Such values can depend on any samples. We deal with matrix compressed sensing, including lasso as a partial problem, and matrix completion, and then we obtain sharp estimation error bounds. To obtain the error bounds for different models such as matrix compressed sensing and matrix completion, we propose a simple unified approach based on a combination of the Huber loss function and the nuclear norm penalization, which is a different approach from the conventional ones. Some error bounds obtained in the present paper are sharper than the past ones.

PDF Abstract
No code implementations yet. Submit your code now

Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods