Paper

Adversarial Reinforcement Learning in Dynamic Channel Access and Power Control

Deep reinforcement learning (DRL) has recently been used to perform efficient resource allocation in wireless communications. In this paper, the vulnerabilities of such DRL agents to adversarial attacks is studied. In particular, we consider multiple DRL agents that perform both dynamic channel access and power control in wireless interference channels. For these victim DRL agents, we design a jammer, which is also a DRL agent. We propose an adversarial jamming attack scheme that utilizes a listening phase and significantly degrades the users' sum rate. Subsequently, we develop an ensemble policy defense strategy against such a jamming attacker by reloading models (saved during retraining) that have minimum transition correlation.

Results in Papers With Code
(↓ scroll down to see all results)