Adversarial Pseudo Healthy Synthesis Needs Pathology Factorization

Pseudo healthy synthesis, i.e. the creation of a subject-specific `healthy' image from a pathological one, could be helpful in tasks such as anomaly detection, understanding changes induced by pathology and disease or even as data augmentation. We treat this task as a factor decomposition problem: we aim to separate what appears to be healthy and where disease is (as a map)... (read more)

PDF Abstract
No code implementations yet. Submit your code now

Datasets


Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods used in the Paper


METHOD TYPE
Batch Normalization
Normalization
Residual Connection
Skip Connections
PatchGAN
Discriminators
ReLU
Activation Functions
Tanh Activation
Activation Functions
Residual Block
Skip Connection Blocks
Instance Normalization
Normalization
Leaky ReLU
Activation Functions
Sigmoid Activation
Activation Functions
GAN Least Squares Loss
Loss Functions
Cycle Consistency Loss
Loss Functions
CycleGAN
Generative Models
Convolution
Convolutions
GAN
Generative Models