Adversarial NLI for Factual Correctness in Text Summarisation Models

24 May 2020Mario BarrantesBenedikt HerudekRichard Wang

We apply the Adversarial NLI dataset to train the NLI model and show that the model has the potential to enhance factual correctness in abstract summarization. We follow the work of Falke et al. (2019), which rank multiple generated summaries based on the entailment probabilities between an source document and summaries and select the summary that has the highest entailment probability... (read more)

PDF Abstract


No code implementations yet. Submit your code now


Results from the Paper

  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods used in the Paper