Advances and Challenges in Meta-Learning: A Technical Review

Meta-learning empowers learning systems with the ability to acquire knowledge from multiple tasks, enabling faster adaptation and generalization to new tasks. This review provides a comprehensive technical overview of meta-learning, emphasizing its importance in real-world applications where data may be scarce or expensive to obtain. The paper covers the state-of-the-art meta-learning approaches and explores the relationship between meta-learning and multi-task learning, transfer learning, domain adaptation and generalization, self-supervised learning, personalized federated learning, and continual learning. By highlighting the synergies between these topics and the field of meta-learning, the paper demonstrates how advancements in one area can benefit the field as a whole, while avoiding unnecessary duplication of efforts. Additionally, the paper delves into advanced meta-learning topics such as learning from complex multi-modal task distributions, unsupervised meta-learning, learning to efficiently adapt to data distribution shifts, and continual meta-learning. Lastly, the paper highlights open problems and challenges for future research in the field. By synthesizing the latest research developments, this paper provides a thorough understanding of meta-learning and its potential impact on various machine learning applications. We believe that this technical overview will contribute to the advancement of meta-learning and its practical implications in addressing real-world problems.

PDF Abstract

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here