Addressing the Fundamental Tension of PCGML with Discriminative Learning

10 Sep 2018  ·  Isaac Karth, Adam M. Smith ·

Procedural content generation via machine learning (PCGML) is typically framed as the task of fitting a generative model to full-scale examples of a desired content distribution. This approach presents a fundamental tension: the more design effort expended to produce detailed training examples for shaping a generator, the lower the return on investment from applying PCGML in the first place. In response, we propose the use of discriminative models (which capture the validity of a design rather the distribution of the content) trained on positive and negative examples. Through a modest modification of WaveFunctionCollapse, a commercially-adopted PCG approach that we characterize as using elementary machine learning, we demonstrate a new mode of control for learning-based generators. We demonstrate how an artist might craft a focused set of additional positive and negative examples by critique of the generator's previous outputs. This interaction mode bridges PCGML with mixed-initiative design assistance tools by working with a machine to define a space of valid designs rather than just one new design.

PDF Abstract

Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here