Adding Recurrence to Pretrained Transformers for Improved Efficiency and Context Size

16 Aug 2020 Davis Yoshida Allyson Ettinger Kevin Gimpel

Fine-tuning a pretrained transformer for a downstream task has become a standard method in NLP in the last few years. While the results from these models are impressive, applying them can be extremely computationally expensive, as is pretraining new models with the latest architectures... (read more)

PDF Abstract
No code implementations yet. Submit your code now

Results from the Paper

  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods used in the Paper