Adaptive Stochastic Nonlinear Model Predictive Control with Look-ahead Deep Reinforcement Learning for Autonomous Vehicle Motion Control

7 Nov 2023  ·  Baha Zarrouki, Chenyang Wang, Johannes Betz ·

In this paper, we present a Deep Reinforcement Learning (RL)-driven Adaptive Stochastic Nonlinear Model Predictive Control (SNMPC) to optimize uncertainty handling, constraints robustification, feasibility, and closed-loop performance. To this end, we conceive an RL agent to proactively anticipate upcoming control tasks and to dynamically determine the most suitable combination of key SNMPC parameters - foremost the robustification factor $\kappa$ and the Uncertainty Propagation Horizon (UPH) $T_u$. We analyze the trained RL agent's decision-making process and highlight its ability to learn context-dependent optimal parameters. One key finding is that adapting the constraints robustification factor with the learned policy reduces conservatism and improves closed-loop performance while adapting UPH renders previously infeasible SNMPC problems feasible when faced with severe disturbances. We showcase the enhanced robustness and feasibility of our Adaptive SNMPC (aSNMPC) through the real-time motion control task of an autonomous passenger vehicle to follow an optimal race line when confronted with significant time-variant disturbances. Experimental findings demonstrate that our look-ahead RL-driven aSNMPC outperforms its Static SNMPC (sSNMPC) counterpart in minimizing the lateral deviation both with accurate and inaccurate disturbance assumptions and even when driving in previously unexplored environments.

PDF Abstract

Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here