Adaptive Stochastic Gradient Descent on the Grassmannian for Robust Low-Rank Subspace Recovery and Clustering

12 Dec 2014  ·  Jun He, Yue Zhang ·

In this paper, we present GASG21 (Grassmannian Adaptive Stochastic Gradient for $L_{2,1}$ norm minimization), an adaptive stochastic gradient algorithm to robustly recover the low-rank subspace from a large matrix. In the presence of column outliers, we reformulate the batch mode matrix $L_{2,1}$ norm minimization with rank constraint problem as a stochastic optimization approach constrained on Grassmann manifold. For each observed data vector, the low-rank subspace $\mathcal{S}$ is updated by taking a gradient step along the geodesic of Grassmannian. In order to accelerate the convergence rate of the stochastic gradient method, we choose to adaptively tune the constant step-size by leveraging the consecutive gradients. Furthermore, we demonstrate that with proper initialization, the K-subspaces extension, K-GASG21, can robustly cluster a large number of corrupted data vectors into a union of subspaces. Numerical experiments on synthetic and real data demonstrate the efficiency and accuracy of the proposed algorithms even with heavy column outliers corruption.

PDF Abstract

Datasets


Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here