Adaptive Learning of the Optimal Batch Size of SGD

Recent advances in the theoretical understanding of SGD led to a formula for the optimal batch size minimizing the number of effective data passes, i.e., the number of iterations times the batch size. However, this formula is of no practical value as it depends on the knowledge of the variance of the stochastic gradients evaluated at the optimum. In this paper we design a practical SGD method capable of learning the optimal batch size adaptively throughout its iterations for strongly convex and smooth functions. Our method does this provably, and in our experiments with synthetic and real data robustly exhibits nearly optimal behaviour; that is, it works as if the optimal batch size was known a-priori. Further, we generalize our method to several new batch strategies not considered in the literature before, including a sampling suitable for distributed implementations.

PDF Abstract
No code implementations yet. Submit your code now

Tasks


Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods