Adaptive Label Smoothing with Self-Knowledge

29 Sep 2021  ·  Dongkyu Lee, Ka Chun Cheung, Nevin Zhang ·

Overconfidence has been shown to impair generalization and calibration of a neural network. Previous studies remedy this issue by adding a regularization term to a loss function, preventing a model from making a peaked distribution. Label smoothing smoothes target labels with a predefined prior label distribution; as a result, a model is learned to maximize the likelihood of predicting the soft label. Nonetheless, the amount of smoothing is the same in all samples and remains fixed in training. In other words, label smoothing does not reflect the change in probability distribution mapped by a model over the course of training. To address this issue, we propose a regularization scheme that brings dynamic nature into the smoothing parameter by taking model probability distribution into account, thereby varying the parameter per instance. A model in training self-regulates the extent of smoothing on the fly during forward propagation. Furthermore, inspired by recent work in bridging label smoothing and knowledge distillation, our work utilizes self-knowledge as a prior label distribution in softening target labels, and presents theoretical support for the regularization effect by knowledge distillation. Our regularizer is validated comprehensively on various datasets in machine translation and outperforms strong baselines not only in model performance but also in model calibration by a large margin.

PDF Abstract

Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods