Paper

Adaptive Experience Selection for Policy Gradient

Policy gradient reinforcement learning (RL) algorithms have achieved impressive performance in challenging learning tasks such as continuous control, but suffer from high sample complexity. Experience replay is a commonly used approach to improve sample efficiency, but gradient estimators using past trajectories typically have high variance. Existing sampling strategies for experience replay like uniform sampling or prioritised experience replay do not explicitly try to control the variance of the gradient estimates. In this paper, we propose an online learning algorithm, adaptive experience selection (AES), to adaptively learn an experience sampling distribution that explicitly minimises this variance. Using a regret minimisation approach, AES iteratively updates the experience sampling distribution to match the performance of a competitor distribution assumed to have optimal variance. Sample non-stationarity is addressed by proposing a dynamic (i.e. time changing) competitor distribution for which a closed-form solution is proposed. We demonstrate that AES is a low-regret algorithm with reasonable sample complexity. Empirically, AES has been implemented for deep deterministic policy gradient and soft actor critic algorithms, and tested on 8 continuous control tasks from the OpenAI Gym library. Ours results show that AES leads to significantly improved performance compared to currently available experience sampling strategies for policy gradient.

Results in Papers With Code
(↓ scroll down to see all results)