Adaptive deep density approximation for stochastic dynamical systems

5 May 2024  ·  Junjie He, Qifeng Liao, Xiaoliang Wan ·

In this paper we consider adaptive deep neural network approximation for stochastic dynamical systems. Based on the Liouville equation associated with the stochastic dynamical systems, a new temporal KRnet (tKRnet) is proposed to approximate the probability density functions (PDFs) of the state variables. The tKRnet gives an explicit density model for the solution of the Liouville equation, which alleviates the curse of dimensionality issue that limits the application of traditional grid based numerical methods. To efficiently train the tKRnet, an adaptive procedure is developed to generate collocation points for the corresponding residual loss function, where samples are generated iteratively using the approximate density function at each iteration. A temporal decomposition technique is also employed to improve the long-time integration. Theoretical analysis of our proposed method is provided, and numerical examples are presented to demonstrate its performance.

PDF Abstract
No code implementations yet. Submit your code now

Tasks


Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here