Adaptive Decision-Making with Constraints and Dependent Losses: Performance Guarantees and Applications to Online and Nonlinear Identification

6 Apr 2023  ·  Michael Muehlebach ·

We consider adaptive decision-making problems where an agent optimizes a cumulative performance objective by repeatedly choosing among a finite set of options. Compared to the classical prediction-with-expert-advice set-up, we consider situations where losses are constrained and derive algorithms that exploit the additional structure in optimal and computationally efficient ways. Our algorithm and our analysis is instance dependent, that is, suboptimal choices of the environment are exploited and reflected in our regret bounds. The constraints handle general dependencies between losses (even across time), and are flexible enough to also account for a loss budget, which the environment is not allowed to exceed. The performance of the resulting algorithms is highlighted in two numerical examples, which include a nonlinear and online system identification task.

PDF Abstract
No code implementations yet. Submit your code now

Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here