AdapterFL: Adaptive Heterogeneous Federated Learning for Resource-constrained Mobile Computing Systems

23 Nov 2023  ·  Ruixuan Liu, Ming Hu, Zeke Xia, Jun Xia, Pengyu Zhang, Yihao Huang, Yang Liu, Mingsong Chen ·

Federated Learning (FL) enables collaborative learning of large-scale distributed clients without data sharing. However, due to the disparity of computing resources among massive mobile computing devices, the performance of traditional homogeneous model-based Federated Learning (FL) is seriously limited. On the one hand, to achieve model training in all the diverse clients, mobile computing systems can only use small low-performance models for collaborative learning. On the other hand, devices with high computing resources cannot train a high-performance large model with their insufficient raw data. To address the resource-constrained problem in mobile computing systems, we present a novel heterogeneous FL approach named AdapterFL, which uses a model reassemble strategy to facilitate collaborative training of massive heterogeneous mobile devices adaptively. Specifically, we select multiple candidate heterogeneous models based on the computing performance of massive mobile devices and then divide each heterogeneous model into two partitions. By reassembling the partitions, we can generate models with varied sizes that are combined by the partial parameters of the large model with the partial parameters of the small model. Using these reassembled models for FL training, we can train the partial parameters of the large model using low-performance devices. In this way, we can alleviate performance degradation in large models due to resource constraints. The experimental results show that AdapterFL can achieve up to 12\% accuracy improvement compared to the state-of-the-art heterogeneous federated learning methods in resource-constrained scenarios.

PDF Abstract
No code implementations yet. Submit your code now

Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here