Active Noise Control Portable Device Design

1 Nov 2023  ·  Kai Wu, YuanYuan Chen ·

While our world is filled with its own natural sounds that we can't resist enjoying, it is also chock-full of other sounds that can be irritating, this is noise. Noise not only influences the working efficiency but also the human's health. The problem of reducing noise is one of great importance and great difficulty. The problem has been addressed in many ways over the years. The current methods for noise reducing mostly rely on the materials and transmission medium, which are only effective to some extent for the high frequency noise. However, the effective reduction noise method especially for low frequency noise is very limited. Here we come up with a noise reduction system consist of a sensor to detect the noise in the environment. Then the noise will be sent to an electronic control system to process the noise, which will generate a reverse phase frequency signal to counteract the disturbance. Finally, the processed smaller noise will be broadcasted by the speaker. Through this smart noise reduction system, even the noise with low-frequency can be eliminated. The system is also integrated with sleep tracking and music player applications. It can also remember and store settings for the same environment, sense temperature, and smart control of home furniture, fire alarm, etc. This smart system can transfer data easily by Wi-Fi or Bluetooth and controlled by its APP. In this project, we will present a model of the above technology which can be used in various environments to prevent noise pollution and provide a solution to the people who have difficulties finding a peaceful and quiet environment for sleep, work or study.

PDF Abstract
No code implementations yet. Submit your code now

Tasks


Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here