Active Learning-based Model Predictive Coverage Control

The problem of coverage control, i.e., of coordinating multiple agents to optimally cover an area, arises in various applications. However, coverage applications face two major challenges: (1) dealing with nonlinear dynamics while respecting system and safety critical constraints, and (2) performing the task in an initially unknown environment. We solve the coverage problem by using a hierarchical framework, in which references are calculated at a central server and passed to the agents' local model predictive control (MPC) tracking schemes. Furthermore, to ensure that the environment is actively explored by the agents a probabilistic exploration-exploitation trade-off is deployed. In addition, we derive a control framework that avoids the hierarchical structure by integrating the reference optimization in the MPC formulation. Active learning is then performed drawing inspiration from Upper Confidence Bound (UCB) approaches. For all developed control architectures, we guarantee closed-loop constraint satisfaction and convergence to an optimal configuration. Furthermore, all methods are tested and compared on hardware using a miniature car platform.

PDF Abstract

Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here