Achieving Differential Privacy in Vertically Partitioned Multiparty Learning

11 Nov 2019  ·  Depeng Xu, Shuhan Yuan, Xintao Wu ·

Preserving differential privacy has been well studied under centralized setting. However, it's very challenging to preserve differential privacy under multiparty setting, especially for the vertically partitioned case. In this work, we propose a new framework for differential privacy preserving multiparty learning in the vertically partitioned setting. Our core idea is based on the functional mechanism that achieves differential privacy of the released model by adding noise to the objective function. We show the server can simply dissect the objective function into single-party and cross-party sub-functions, and allocate computation and perturbation of their polynomial coefficients to local parties. Our method needs only one round of noise addition and secure aggregation. The released model in our framework achieves the same utility as applying the functional mechanism in the centralized setting. Evaluation on real-world and synthetic datasets for linear and logistic regressions shows the effectiveness of our proposed method.

PDF Abstract
No code implementations yet. Submit your code now

Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here