Accretionary Learning with Deep Neural Networks

21 Nov 2021  ·  Xinyu Wei, Biing-Hwang Fred Juang, Ouya Wang, Shenglong Zhou, Geoffrey Ye Li ·

One of the fundamental limitations of Deep Neural Networks (DNN) is its inability to acquire and accumulate new cognitive capabilities. When some new data appears, such as new object classes that are not in the prescribed set of objects being recognized, a conventional DNN would not be able to recognize them due to the fundamental formulation that it takes. The current solution is typically to re-design and re-learn the entire network, perhaps with a new configuration, from a newly expanded dataset to accommodate new knowledge. This process is quite different from that of a human learner. In this paper, we propose a new learning method named Accretionary Learning (AL) to emulate human learning, in that the set of objects to be recognized may not be pre-specified. The corresponding learning structure is modularized, which can dynamically expand to register and use new knowledge. During accretionary learning, the learning process does not require the system to be totally re-designed and re-trained as the set of objects grows in size. The proposed DNN structure does not forget previous knowledge when learning to recognize new data classes. We show that the new structure and the design methodology lead to a system that can grow to cope with increased cognitive complexity while providing stable and superior overall performance.

PDF Abstract
No code implementations yet. Submit your code now

Tasks


Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here