Accelerated Primal-Dual Algorithms for Distributed Smooth Convex Optimization over Networks

23 Oct 2019  ·  Jinming Xu, Ye Tian, Ying Sun, Gesualdo Scutari ·

This paper proposes a novel family of primal-dual-based distributed algorithms for smooth, convex, multi-agent optimization over networks that uses only gradient information and gossip communications. The algorithms can also employ acceleration on the computation and communications. We provide a unified analysis of their convergence rate, measured in terms of the Bregman distance associated to the saddle point reformation of the distributed optimization problem. When acceleration is employed, the rate is shown to be optimal, in the sense that it matches (under the proposed metric) existing complexity lower bounds of distributed algorithms applicable to such a class of problem and using only gradient information and gossip communications. Preliminary numerical results on distributed least-square regression problems show that the proposed algorithm compares favorably on existing distributed schemes.

PDF Abstract

Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here