A Unifying Theory of Thompson Sampling for Continuous Risk-Averse Bandits

25 Aug 2021  ·  Joel Q. L. Chang, Vincent Y. F. Tan ·

This paper unifies the design and the analysis of risk-averse Thompson sampling algorithms for the multi-armed bandit problem for a class of risk functionals $\rho$ that are continuous and dominant. We prove generalised concentration bounds for these continuous and dominant risk functionals and show that a wide class of popular risk functionals belong to this class. Using our newly developed analytical toolkits, we analyse the algorithm $\rho$-MTS (for multinomial distributions) and prove that they admit asymptotically optimal regret bounds of risk-averse algorithms under CVaR, proportional hazard, and other ubiquitous risk measures. More generally, we prove the asymptotic optimality of $\rho$-MTS for Bernoulli distributions for a class of risk measures known as empirical distribution performance measures (EDPMs); this includes the well-known mean-variance. Numerical simulations show that the regret bounds incurred by our algorithms are reasonably tight vis-\`a-vis algorithm-independent lower bounds.

PDF Abstract

Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here