A unified variance-reduced accelerated gradient method for convex optimization

NeurIPS 2019  ·  Guanghui Lan, Zhize Li, Yi Zhou ·

We propose a novel randomized incremental gradient algorithm, namely, VAriance-Reduced Accelerated Gradient (Varag), for finite-sum optimization. Equipped with a unified step-size policy that adjusts itself to the value of the condition number, Varag exhibits the unified optimal rates of convergence for solving smooth convex finite-sum problems directly regardless of their strong convexity. Moreover, Varag is the first accelerated randomized incremental gradient method that benefits from the strong convexity of the data-fidelity term to achieve the optimal linear convergence. It also establishes an optimal linear rate of convergence for solving a wide class of problems only satisfying a certain error bound condition rather than strong convexity. Varag can also be extended to solve stochastic finite-sum problems.

PDF Abstract NeurIPS 2019 PDF NeurIPS 2019 Abstract
No code implementations yet. Submit your code now

Tasks


Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here