A unified framework for STAR-RIS coefficients optimization

13 Oct 2023  ·  Hancheng Zhu, Yuanwei Liu, Yik Chung Wu, Vincent K. N. Lau ·

Simultaneously transmitting and reflecting (STAR) reconfigurable intelligent surface (RIS), which serves users located on both sides of the surface, has recently emerged as a promising enhancement to the traditional reflective only RIS. Due to the lack of a unified comparison of communication systems equipped with different modes of STAR-RIS and the performance degradation caused by the constraints involving discrete selection, this paper proposes a unified optimization framework for handling the STAR-RIS operating mode and discrete phase constraints. With a judiciously introduced penalty term, this framework transforms the original problem into two iterative subproblems, with one containing the selection-type constraints, and the other subproblem handling other wireless resource. Convergent point of the whole algorithm is found to be at least a stationary point under mild conditions. As an illustrative example, the proposed framework is applied to a sum-rate maximization problem in the downlink transmission. Simulation results show that the algorithms from the proposed framework outperform other existing algorithms tailored for different STAR-RIS scenarios. Furthermore, it is found that 4 or even 2 discrete phases STAR-RIS could achieve almost the same sum-rate performance as the continuous phase setting, showing for the first time that discrete phase is not necessarily a cause of significant performance degradation.

PDF Abstract
No code implementations yet. Submit your code now

Tasks


Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here