A Synaptic Neural Network and Synapse Learning

ICLR 2019  ·  Chang Li ·

A Synaptic Neural Network (SynaNN) consists of synapses and neurons. Inspired by the synapse research of neuroscience, we built a synapse model with a nonlinear synapse function of excitatory and inhibitory channel probabilities. Introduced the concept of surprisal space and constructed a commutative diagram, we proved that the inhibitory probability function -log(1-exp(-x)) in surprisal space is the topologically conjugate function of the inhibitory complementary probability 1-x in probability space. Furthermore, we found that the derivative of the synapse over the parameter in the surprisal space is equal to the negative Bose-Einstein distribution. In addition, we constructed a fully connected synapse graph (tensor) as a synapse block of a synaptic neural network. Moreover, we proved the gradient formula of a cross-entropy loss function over parameters, so synapse learning can work with the gradient descent and backpropagation algorithms. In the proof-of-concept experiment, we performed an MNIST training and testing on the MLP model with synapse network as hidden layers.

PDF Abstract

Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods