As a recognized variant and improvement for Trust Region Policy Optimization (TRPO), proximal policy optimization (PPO) has been widely used with several advantages: efficient data utilization, easy implementation and good parallelism. In this paper, a first-order gradient on-policy learning algorithm called Policy Optimization with Penalized Point Probability Distance (POP3D), which is a lower bound to the square of total variance divergence is proposed as another powerful variant... (read more)
PDF