A straightforward line search approach on the expected empirical loss for stochastic deep learning problems

2 Oct 2020  ·  Maximus Mutschler, Andreas Zell ·

A fundamental challenge in deep learning is that the optimal step sizes for update steps of stochastic gradient descent are unknown. In traditional optimization, line searches are used to determine good step sizes, however, in deep learning, it is too costly to search for good step sizes on the expected empirical loss due to noisy losses. This empirical work shows that it is possible to approximate the expected empirical loss on vertical cross sections for common deep learning tasks considerably cheaply. This is achieved by applying traditional one-dimensional function fitting to measured noisy losses of such cross sections. The step to a minimum of the resulting approximation is then used as step size for the optimization. This approach leads to a robust and straightforward optimization method which performs well across datasets and architectures without the need of hyperparameter tuning.

PDF Abstract
No code implementations yet. Submit your code now

Tasks


Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here