A Statistical Theory of Deep Learning via Proximal Splitting

20 Sep 2015  ·  Nicholas G. Polson, Brandon T. Willard, Massoud Heidari ·

In this paper we develop a statistical theory and an implementation of deep learning models. We show that an elegant variable splitting scheme for the alternating direction method of multipliers optimises a deep learning objective. We allow for non-smooth non-convex regularisation penalties to induce sparsity in parameter weights. We provide a link between traditional shallow layer statistical models such as principal component and sliced inverse regression and deep layer models. We also define the degrees of freedom of a deep learning predictor and a predictive MSE criteria to perform model selection for comparing architecture designs. We focus on deep multiclass logistic learning although our methods apply more generally. Our results suggest an interesting and previously under-exploited relationship between deep learning and proximal splitting techniques. To illustrate our methodology, we provide a multi-class logit classification analysis of Fisher's Iris data where we illustrate the convergence of our algorithm. Finally, we conclude with directions for future research.

PDF Abstract
No code implementations yet. Submit your code now

Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here