A Simple Yet Strong Pipeline for HotpotQA

State-of-the-art models for multi-hop question answering typically augment large-scale language models like BERT with additional, intuitively useful capabilities such as named entity recognition, graph-based reasoning, and question decomposition. However, does their strong performance on popular multi-hop datasets really justify this added design complexity?.. (read more)

PDF Abstract EMNLP 2020 PDF EMNLP 2020 Abstract

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods used in the Paper