A Sequential Approximation Framework for Coded Distributed Optimization

24 Oct 2017  ·  Jingge Zhu, Ye Pu, Vipul Gupta, Claire Tomlin, Kannan Ramchandran ·

Building on the previous work of Lee et al. and Ferdinand et al. on coded computation, we propose a sequential approximation framework for solving optimization problems in a distributed manner. In a distributed computation system, latency caused by individual processors ("stragglers") usually causes a significant delay in the overall process. The proposed method is powered by a sequential computation scheme, which is designed specifically for systems with stragglers. This scheme has the desirable property that the user is guaranteed to receive useful (approximate) computation results whenever a processor finishes its subtask, even in the presence of uncertain latency. In this paper, we give a coding theorem for sequentially computing matrix-vector multiplications, and the optimality of this coding scheme is also established. As an application of the results, we demonstrate solving optimization problems using a sequential approximation approach, which accelerates the algorithm in a distributed system with stragglers.

PDF Abstract
No code implementations yet. Submit your code now

Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here