A Semidefinite Programming Approach to Discrete-time Infinite Horizon Persistent Monitoring

1 Apr 2021  ·  Samuel C. Pinto, Sean B. Andersson, Julien M. Hendrickx, Christos G. Cassandras ·

We investigate the problem of persistent monitoring, where a mobile agent has to survey multiple targets in an environment in order to estimate their internal states. These internal states evolve with linear stochastic dynamics and the agent can observe them with a linear observation model. However, the signal to noise ratio is a monotonically decreasing function of the distance between the agent and the target. The goal is to minimize the uncertainty in the state estimates over the infinite horizon. We show that, for a periodic trajectory with fixed cycle length, the problem can be formulated as a set of semidefinite programs. We design a scheme that leverages the spatial configuration of the targets to guide the search over this set of optimization problems in order to provide efficient trajectories. Results are compared to a state of the art approach and we obtain improvements of up to 91% in terms of cost in a simple scenario, with much lower computational time.

PDF Abstract
No code implementations yet. Submit your code now

Tasks


Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here