A Semi-Distributed Interior Point Algorithm for Optimal Coordination of Automated Vehicles at Intersections

19 Nov 2021  ·  Robert Hult, Mario Zanon, Sebastien Gros, Paolo Falcone ·

In this paper, we consider the optimal coordination of automated vehicles at intersections under fixed crossing orders. We formulate the problem using direct optimal control and exploit the structure to construct a semi-distributed primal-dual interior-point algorithm to solve it by parallelizing most of the computations. Differently from standard distributed optimization algorithms, where the optimization problem is split, in our approach we split the linear algebra steps, such that the algorithm takes the same steps as a fully centralized one, while still performing computations in a distributed fashion. We analyze the communication requirements of the algorithm, and propose an approximation scheme which can significantly reduce the data exchange. We demonstrate the effectiveness of the algorithm in hard but realistic scenarios, which show that the approximation leads to reductions in communicated data of almost 99\% of the exact formulation, at the expense of less than 1\% suboptimality.

PDF Abstract
No code implementations yet. Submit your code now

Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here