Paper

A Scenario Approach to Risk-Aware Safety-Critical System Verification

With the growing interest in deploying robots in unstructured and uncertain environments, there has been increasing interest in factoring risk into safety-critical control development. Similarly, the authors believe risk should also be accounted in the verification of these controllers. In pursuit of sample-efficient methods for uncertain black-box verification then, we first detail a method to estimate the Value-at-Risk of arbitrary scalar random variables without requiring \textit{apriori} knowledge of its distribution. Then, we reformulate the uncertain verification problem as a Value-at-Risk estimation problem making use of our prior results. In doing so, we provide fundamental sampling requirements to bound with high confidence the volume of states and parameters for a black-box system that could potentially yield unsafe phenomena. We also show that this procedure works independent of system complexity through simulated examples of the Robotarium.

Results in Papers With Code
(↓ scroll down to see all results)