Paper

A review of individual tree crown detection and delineation from optical remote sensing images

Powered by the advances of optical remote sensing sensors, the production of very high spatial resolution multispectral images provides great potential for achieving cost-efficient and high-accuracy forest inventory and analysis in an automated way. Lots of studies that aim at providing an inventory to the level of each individual tree have generated a variety of methods for Individual Tree Crown Detection and Delineation (ITCD). This review covers ITCD methods for detecting and delineating individual tree crowns, and systematically reviews the past and present of ITCD-related researches applied to the optical remote sensing images. With the goal to provide a clear knowledge map of existing ITCD efforts, we conduct a comprehensive review of recent ITCD papers to build a meta-data analysis, including the algorithm, the study site, the tree species, the sensor type, the evaluation method, etc. We categorize the reviewed methods into three classes: (1) traditional image processing methods (such as local maximum filtering, image segmentation, etc.); (2) traditional machine learning methods (such as random forest, decision tree, etc.); and (3) deep learning based methods. With the deep learning-oriented approaches contributing a majority of the papers, we further discuss the deep learning-based methods as semantic segmentation and object detection methods. In addition, we discuss four ITCD-related issues to further comprehend the ITCD domain using optical remote sensing data, such as comparisons between multi-sensor based data and optical data in ITCD domain, comparisons among different algorithms and different ITCD tasks, etc. Finally, this review proposes some ITCD-related applications and a few exciting prospects and potential hot topics in future ITCD research.

Results in Papers With Code
(↓ scroll down to see all results)