A Quasiconvex Formulation for Radial Cameras

CVPR 2021  ·  Carl Olsson, Viktor Larsson, Fredrik Kahl ·

In this paper we study structure from motion problems for 1D radial cameras. Under this model the projection of a 3D point is a line in the image plane going through the principal point, which makes the model invariant to radial distortion and changes in focal length. It can therefore effectively be applied to uncalibrated image collections without the need for explicit estimation of camera intrinsics. We show that the reprojection errors of 1D radial cameras are examples of quasiconvex functions. This opens up the possibility to solve a general class of relevant reconstruction problems globally optimally using tools from convex optimization. In fact, our resulting algorithm is based on solving a series of LP problems. We perform an extensive experimental evaluation, on both synthetic and real data, showing that a whole class of multiview geometry problems across a range of different cameras models with varying and unknown intrinsic calibration can be reliably and accurately solved within the same framework.

PDF Abstract
No code implementations yet. Submit your code now

Tasks


Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here