A Pure Integral-Type PLL with a Damping Branch to Enhance the Stability of Grid-Tied Inverter under Weak Grids

4 Jan 2024  ·  Yi Zhou, Zhouchen Deng, Shi Chen, Yiwei Qiu, Tianlei Zang, Buxiang Zhou ·

In a phase-locked loop (PLL) synchronized inverter, due to the strong nonlinear coupling between the PLL's parame-ters and the operation power angle, the equivalent damping coefficient will quickly deteriorate while the power angle is close to 90{\deg} under an ultra-weak grid, which causes the synchronous instability. To address this issue, in this letter, a pure integral-type phase-locked loop (IPLL) with a damping branch is proposed to replace the traditional PI-type PLL. The equivalent damping coefficient of an IPLL-synchronized inverter is decoupled with the steady-state power angle. As a result, the IPLL-synchronized inverter can stably operate under an ultra-weak grid when the equilibrium point exists. Finally, time-domain simulation results verify the effectiveness and correctness of the proposed IPLL.

PDF Abstract
No code implementations yet. Submit your code now

Tasks


Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here