A provably convergent alternating minimization method for mean field inference

20 Feb 2015  ·  Pierre Baqué, Jean-Hubert Hours, François Fleuret, Pascal Fua ·

Mean-Field is an efficient way to approximate a posterior distribution in complex graphical models and constitutes the most popular class of Bayesian variational approximation methods. In most applications, the mean field distribution parameters are computed using an alternate coordinate minimization. However, the convergence properties of this algorithm remain unclear. In this paper, we show how, by adding an appropriate penalization term, we can guarantee convergence to a critical point, while keeping a closed form update at each step. A convergence rate estimate can also be derived based on recent results in non-convex optimization.

PDF Abstract
No code implementations yet. Submit your code now

Tasks


Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here