A Primal Dual Active Set with Continuation Algorithm for the \ell^0-Regularized Optimization Problem

3 Mar 2014  ·  Yuling Jiao, Bangti Jin, Xiliang Lu ·

We develop a primal dual active set with continuation algorithm for solving the \ell^0-regularized least-squares problem that frequently arises in compressed sensing. The algorithm couples the the primal dual active set method with a continuation strategy on the regularization parameter. At each inner iteration, it first identifies the active set from both primal and dual variables, and then updates the primal variable by solving a (typically small) least-squares problem defined on the active set, from which the dual variable can be updated explicitly. Under certain conditions on the sensing matrix, i.e., mutual incoherence property or restricted isometry property, and the noise level, the finite step global convergence of the algorithm is established. Extensive numerical examples are presented to illustrate the efficiency and accuracy of the algorithm and the convergence analysis.

PDF Abstract
No code implementations yet. Submit your code now

Tasks


Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here