A Pre-trained Sequential Recommendation Framework: Popularity Dynamics for Zero-shot Transfer

3 Jan 2024  ·  Junting Wang, Praneet Rathi, Hari Sundaram ·

Sequential recommenders are crucial to the success of online applications, \eg e-commerce, video streaming, and social media. While model architectures continue to improve, for every new application domain, we still have to train a new model from scratch for high quality recommendations. On the other hand, pre-trained language and vision models have shown great success in zero-shot or few-shot adaptation to new application domains. Inspired by the success of pre-trained models in peer AI fields, we propose a novel pre-trained sequential recommendation framework: PrepRec. We learn universal item representations by modeling item popularity dynamics. Through extensive experiments on five real-world datasets, we show that PrepRec, without any auxiliary information, can not only zero-shot transfer to a new domain, but achieve competitive performance compared to state-of-the-art sequential recommender models with only a fraction of the model size. In addition, with a simple post-hoc interpolation, PrepRec can improve the performance of existing sequential recommenders on average by 13.8\% in Recall@10 and 29.5% in NDCG@10. We provide an anonymized implementation of PrepRec at https://anonymous.4open.science/r/PrepRec--2F60/

PDF Abstract
No code implementations yet. Submit your code now

Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here