A PCA-Based Change Detection Framework for Multidimensional Data Streams: Change Detection in Multidimensional Data Streams

Detecting changes in multidimensional data streams is an important and challenging task. In unsupervised change detection, changes are usually detected by comparing the distribution in a current (test) window with a reference window. It is thus essential to design divergence metrics and density estimators for comparing the data distributions, which are mostly done for univariate data. Detecting changes in multidimensional data streams brings difficulties to the density estimation and comparisons. In this paper, we propose a framework for detecting changes in multidimensional data streams based on principal component analysis, which is used for projecting data into a lower dimensional space, thus facilitating density estimation and change-score calculations. The proposed framework also has advantages over existing approaches by reducing computational costs with an efficient density estimator, promoting the change-score calculation by introducing effective divergence metrics, and by minimizing the efforts required from users on the threshold parameter setting by using the Page-Hinkley test. The evaluation results on synthetic and real data show that our framework outperforms two baseline methods in terms of both detection accuracy and computational costs.

PDF

Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here