Paper

A particle-based variational approach to Bayesian Non-negative Matrix Factorization

Bayesian Non-negative Matrix Factorization (NMF) is a promising approach for understanding uncertainty and structure in matrix data. However, a large volume of applied work optimizes traditional non-Bayesian NMF objectives that fail to provide a principled understanding of the non-identifiability inherent in NMF-- an issue ideally addressed by a Bayesian approach. Despite their suitability, current Bayesian NMF approaches have failed to gain popularity in an applied setting; they sacrifice flexibility in modeling for tractable computation, tend to get stuck in local modes, and require many thousands of samples for meaningful uncertainty estimates. We address these issues through a particle-based variational approach to Bayesian NMF that only requires the joint likelihood to be differentiable for tractability, uses a novel initialization technique to identify multiple modes in the posterior, and allows domain experts to inspect a `small' set of factorizations that faithfully represent the posterior. We introduce and employ a class of likelihood and prior distributions for NMF that formulate a Bayesian model using popular non-Bayesian NMF objectives. On several real datasets, we obtain better particle approximations to the Bayesian NMF posterior in less time than baselines and demonstrate the significant role that multimodality plays in NMF-related tasks.

Results in Papers With Code
(↓ scroll down to see all results)