A PAC-Bayesian Tutorial with A Dropout Bound

8 Jul 2013  ·  David McAllester ·

This tutorial gives a concise overview of existing PAC-Bayesian theory focusing on three generalization bounds. The first is an Occam bound which handles rules with finite precision parameters and which states that generalization loss is near training loss when the number of bits needed to write the rule is small compared to the sample size. The second is a PAC-Bayesian bound providing a generalization guarantee for posterior distributions rather than for individual rules. The PAC-Bayesian bound naturally handles infinite precision rule parameters, $L_2$ regularization, {\em provides a bound for dropout training}, and defines a natural notion of a single distinguished PAC-Bayesian posterior distribution. The third bound is a training-variance bound --- a kind of bias-variance analysis but with bias replaced by expected training loss. The training-variance bound dominates the other bounds but is more difficult to interpret. It seems to suggest variance reduction methods such as bagging and may ultimately provide a more meaningful analysis of dropouts.

PDF Abstract
No code implementations yet. Submit your code now

Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here